Integrálne transformácie
Prípona
.doc |
Typ
semestrálna práca |
Stiahnuté
7 x |
Veľkosť
0,2 MB |
Jazyk
slovenský |
ID projektu
3563 |
Posledná úprava
21.04.2017 |
Zobrazené
1 409 x |
Autor:
- |
Zdieľaj na Facebooku |
Detaily projektu |
Popis:
I. Laplaceova transformácia
Podstatou tejto metódy analýzy dynamických dejov v lineárnych obvodoch je, že matematický model obvodu, zostavený pre stavové veličiny meniace sa spojito uC(t) a iL(t), neriešime priamo, ale rovnicu najprv pomocou Laplaceovej alebo Laplace-Carsonovej transformácie prevedieme zo vzoru na obraz. Týmto krokom sa nám integro-diferenciálna rovnica prevedie na algebraickú rovnicu alebo sústavu rovníc. Tieto rovnice sú ľahko riešiteľné. Po vyriešení výsledok opäť prevedieme naspäť podľa Laplace-Carsonovej transformácie z obrazu na vzor a tým dostanemé hľadanú časovú odozvu. Laplaceova transformácia; taktiež ňou možeme analyzovať obvody a je podstatne jednoduchšia. Laplaceova transformácia úzko súvisí s Fourierovou transformáciou a Z (zet) transformáciou, ktorú používame na riešenie diskrétnych systémov, teda v systémoch v ktorých fyzikálna veličina sa mení alebo je meraná iba v diskrétnych časových okamihoch, často rovnako od seba vzdialených.
Kľúčové slová:
laplaceova transformácia
fourierova transformácia
harmonická analýza
matematická metóda
experimentálne metódy
Obsah:
- I. Laplaceova transformácia -4-
1 Definícia a vlastnosti Laplaceovej transformácie -5-
2 Vlastnosti Laplaceovej transformácie -5-
3 Slovník Laplaceovej transformácie -7-
II. Fourierova transformácia -8-
1 Tvary Fourierovho radu -8-
2 Prípady súmernosti pre Fourierov rad -10-
3 Harmonická analýza -10-
4 Matematické metódy -10-
5 Numerická metóda harmonickej analýzy -11-
6 Experimentálne metódy -11-
7 Analýza elektrických obvodov -12-
O súboroch cookie na tejto stránke
Súbory cookie používame na funkčné účely, na zhromažďovanie a analýzu informácií o výkone a používaní stránky.